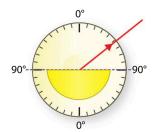

Construire un rayon réfléchi

Restituer ses connaissances.

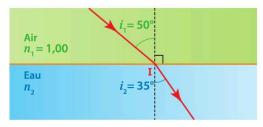
Un rayon lumineux provenant d'un laser arrive à la surface d'un bloc de verre représenté en bleu sur le schéma ci-contre.

- 1. Lire la mesure de l'angle d'incidence.
- 2. Déterminer l'angle de réflexion.
- 3. Reproduire le schéma et tracer le rayon réfléchi.



10 Représenter un rayon incident

| Faire un schéma adapté.


Un rayon lumineux provenant d'un laser est en partie réfléchi par une cuve remplie d'un liquide jaune et posée sur un disque gradué.

• Reproduire le schéma et représenter le rayon incident.

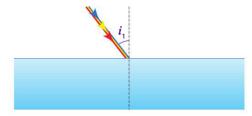
Calculer un indice de réfraction

Exploiter des informations.

- 1. Identifier les angles d'incidence et de réfraction dans la situation schématisée ci-dessus.
- 2. Utiliser la loi de Snell-Descartes pour calculer l'indice de réfraction de l'eau. Utiliser le réflexe 3

Donnée

 $n_1 \times \sin i_1 = n_2 \times \sin i_2$.


Exercice 1

À l'aide de la loi de SNELL-DESCARTES relative à la réfraction $n_1 \times \sin i_1 = n_2 \times \sin i_2$, calculer l'angle de réfraction i_2 pour un angle d'incidence i_1 égal à 25° et des indices de réfraction n_1 égal à 1,00 et n_2 égal à 1,39.

24 Lumière polychromatique

| Effectuer des calculs ; faire un schéma adapté.

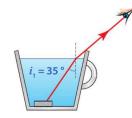
Une lumière polychromatique est constituée de trois radiations bleue, jaune et rouge de longueurs d'onde respectives : λ_{bleu} = 486 nm, λ_{jaune} = 589 nm et λ_{rouge} = 650 nm. Elle atteint un bloc de verre sous un angle d'incidence $i_1 = 40,0$ ° comme indiqué sur le schéma suivant.

- 1. Calculer l'angle de réfraction pour chacune de ces radiations.
- 2. Reproduire le schéma puis représenter les trois radiations réfractées en respectant leurs positions relatives.
- 3. Quelle est la radiation :
- a. la plus déviée ?
- b. la moins déviée?
- 4. Quelle propriété du verre a été mise en évidence ?

Données

• Indice de réfraction du verre pour les différentes radiations : $n_{\text{bleu}} = 1,516$; $n_{\text{jaune}} = 1,510$; $n_{\text{rouge}} = 1,505$.

23 La petite monnaie réapparaît


| Faire un schéma adapté ; effectuer des calculs.

En plaçant une pièce de monnaie dans une tasse vide de manière à ne pas la voir, il est possible de la faire réapparaître, sans bouger, en remplissant simplement la tasse d'eau.

La situation est schématisée ci-dessous :

- 1. Quel phénomène se produit-il?
- 2. Reproduire le schéma et montrer que, sans eau au fond de la tasse, le rayon lumineux provenant de la pièce de monnaie ne parvient pas à l'observateur.
- 3. Sous quel angle de réfraction, le rayon lumineux provenant de la pièce parvient-il à l'observateur?

Données

$$n_{\rm air} = 1,00$$
; $n_{\rm eau} = 1,33$.

22 Pour contrer la dispersion

| Faire un schéma adapté ; effectuer des calculs.

Pour limiter les défauts liés à la dispersion de la lumière, les astronomes utilisent parfois des lentilles en fluorine qui est un matériau très peu dispersif, très fragile et assez onéreux.

- 1. Que signifie la phrase : « la fluorine est un matériau peu dispersif »?
- 2. Un rayon pénètre dans un verre de fluorine en faisant un angle de 30 ° avec la surface de séparation air/fluorine.

Schématiser la situation.

3. Calculer l'angle de réfraction du rayon dans la fluorine.

Données

$$n_{\rm air} = 1,00$$
; $n_{\rm fluorine} = 1,43$.